Monotone Comparative Statics

Econ 3030

Fall 2025

Lecture 7

Outline

- Omparative Statics Without Calculus
- Supermodularity and Single Crossing
- Topkis and Milgrom & Shannon's Theorems
- Finite Data

Announcement

The midterm will be on October 9.

Comparative Statics Without Calculus: Introduction

- Consider a function f(x, q) where x and q are real numbers.
- Assume $f_{xx}(x,q) < 0$ (this is $\frac{\partial^2 f(x,q)}{\partial x \partial x}$, the second derivative w.r.t. x)
- We want to solve

$$\max f(x, q)$$
, subject to $q \in \Theta$, $x \in S(q)$

Let

$$x^*(q) = \arg\max_{q \in \Theta, \ x \in S(q)} f(x, q)$$

- What do we know about how $x^*(q)$ changes with q?
- Use the implicit function theorem

Comparative Statics Without Calculus

Remark

- How does $x^*(q) = \arg\max_{q \in \Theta, x \in S(q)} f(x, q)$ change with q?
- Using the implicit function theorem, one can show that if there are complementarities between the choice variable x and the parameter q, the optimum increases in q.

First Order Condition: $f_x(x,q) = 0$. Second Order Condition: $f_{xx}(x,q) < 0$.

$$x_q^*(q) = -\frac{f_{xq}(x,q)}{f_{xx}(x,q)}$$

Then

$$x_q^*(q) \geq 0$$
 if and only if $f_{xq}(x,q) \geq 0$

Issues with implicit function theorem:

- IFT needs calculus.
- 2 Conclusions hold only in a neighborhood of the optimum.
- Results are dependent on the functional form used for the objective function.
 - \bullet In particular, IFT gives cardinal results that depend on the assumptions on f.

Monotone Comparative Statics

Objectives

- Monotone Comparative Statics give results about "changes" that:
 - do not need calculus;
 - are not necessarily local;
 - are ordinal (that is, robust to monotonic transformations);
 - allow for non-uniqueness of the optimum.
- One can get conclusions similar to IFT without calculus.
- The downside is that the results are not as strong.

Main Idea: Complementarities

- The central idea generalizes the notion of complementarities between endogenous variable and parameters.
 - With calculus, this is the assumption $f_{xq}(x,q) \ge 0$.
- If the optimum is not unique, then $x^*(q)$ is a correspondence, but what does it mean for a correspondence to be increasing?

Strong Set Order

• Ranking real numbers is easy, but how can we express the idea that one set is bigger than another set?

Definition

For two sets of real numbers A and B, define the binary relation \geq_s as follows:

$$\text{for any } a \in A \text{ and } b \in B$$

$$A \geq_s B \qquad \text{if} \qquad \\ \min\{a,b\} \in B \quad \text{and} \quad \max\{a,b\} \in A$$

- $A \ge_s B$ reads "A is greater than or equal to B in the strong set order".
 - Generalizes the notion of greater than from numbers to sets of numbers.
 - This definition reduces to the standard definition when sets are singletons.

Example

Suppose $A = \{1,3\}$ and $B = \{0,2\}$. Then, A is not greater than or equal to B in the strong set order.

Non-Decreasing Correspondences

Definition

We say a correspondence $g: \mathbb{R}^n \to 2^{\mathbb{R}}$ is non-decreasing in \mathbf{x} if and only if

$$\mathbf{x}' > \mathbf{x}$$
 implies $g(\mathbf{x}') \geq_s g(\mathbf{x})$

- Thus, $\mathbf{x}' > \mathbf{x}$ implies that for any $y' \in g(\mathbf{x}')$ and $y \in g(\mathbf{x})$: $\min\{y', y\} \in g(\mathbf{x})$ and $\max\{y', y\} \in g(\mathbf{x}')$.
 - Larger points in the domain correspond to larger sets in the codomain.
- Generalizes the notion of increasing function to correspondences.

Monotone Comparative Statics: Simplest Case

Set up

- Suppose some function $f: \mathbb{R}^2 \to \mathbb{R}$ is the objective function; this is not necessarily concave or differentiable, and the optimizer could be set valued.
- Let

$$x^*(q) = \arg \max f(x, q)$$
, subject to $q \in \Theta$, $x \in S(q)$

• Note: for any strictly increasing h, this problem is equivalent to

$$x^*(q) = \arg \max h(f(x,q))$$
, subject to $q \in \Theta$, $x \in S(q)$

- $h(\cdot)$ may destroy smoothness or concavity properties of the objective function so IFT may not work.
- For now, assume $S(\cdot)$ is independent of q (no constraints).
- Assume existence of a solution, but not uniqueness.

Supermodularity

Definition

The function $f: \mathbb{R}^2 \to \mathbb{R}$ is supermodular in (x, q) if for all x' > x f(x', q) - f(x, q) is non-decreasing in q.

- If f is supermodular in (x, q), then the incremental gain to a higher x is greater when q is higher.
- This is the idea that x and q are "complements".

Supermodularity

Definition

The function $f: \mathbb{R}^2 \to \mathbb{R}$ is supermodular in (x, q) if

for all
$$x' > x$$
 $f(x', q) - f(x, q)$ is non-decreasing in q .

Non decreasing in q means

$$q'>q\Rightarrow f(x',q')-f(x,q')\geq f(x',q)-f(x,q)$$

Question 1, Problem Set 4.

Show that supermodularity is equivalent to the property that

$$q' > q$$
 implies $f(x, q') - f(x, q)$ is non-decreasing in x

Differentiable Version of Supermodularity

 \bullet When f is smooth, supermodularity has a characterization in terms of derivatives.

Lemma

A twice continuously differentiable function $f: \mathbb{R}^2 \to \mathbb{R}$ is supermodular in (x, q) if and only if $\frac{\partial^2 f(x,q)}{\partial x \partial q} \geq 0$ for all (x,q).

- The inequality in the definition of supermodularity is just the discrete version of the mixed-partial condition in the lemma.
 - q' > q implies f(x, q') f(x, q) is non-decreasing in x

Theorem (Easy Topkis' Monotonicity Theorem)

Topkis' Monotonicity Theorem

If f is supermodular in (x, q), then $x^*(q) = \arg\max f(x, q)$ is non-decreasing.

Let q' > q and take $x \in x^*(q)$ and $x' \in x^*(q')$. We need to show $x^*(q') \ge_s x^*(q)$.

• $x \in x^*(q)$ also implies that $f(\max\{x, x'\}, q) - f(x', q) \ge 0$

• By supermodularity, $f(\max\{x, x'\}, q') - f(x', q') \ge 0$,

• Now show that $\min\{x, x'\} \in x^*(q)$

• $x' \in x^*(q')$ implies that $f(x', q') - f(\max\{x, x'\}, q) \ge 0$ (by supermodularity),

• $\max\{x, x'\} \in x^*(q')$ also implies that $f(\max\{x, x'\}, q') - f(x', q') \ge 0$, • which by supermodularity implies $f(x,q) - f(\min\{x,x'\},q) \le 0$

• verify these by checking two cases, x > x' and x' > x.

• $x \in x^*(q)$ implies $f(x,q) - f(\min\{x,x'\},q) \ge 0$.

• First show that $\max\{x, x'\} \in x^*(q')$

• or equivalently $f(\max\{x, x'\}, q) - f(x', q') < 0$.

• Hence $\max\{x, x'\} \in x^*(q')$.

• Hence $\min\{x, x'\} \in x^*(q)$.

Proof.

Topkis' Monotonicity Theorem

Theorem (Easy Topkis' Monotonicity Theorem)

If f is supermodular in (x, q), then $x^*(q) = \arg\max f(x, q)$ is non-decreasing.

- Supermodularity is sufficient to draw comparative statics conclusions in optimization problems without other assumptons.
- Topkis' Theorem follows from the IFT whenever the standard full-rank condition in the IFT holds.
 - At a maximum, if $f_{xx}(x,q) \neq 0$, it must be negative (by the second-order condition), hence the IFT tells you that $x^*(q)$ is strictly increasing.
 - Remember, IFT says: $x_q^*(q) = -\frac{f_{xq}(x,q)}{f_{xx}(x,q)}$

Example

Profit Maximization Without Calculus

- A monopolist chooses output q to solve $\max p(q)q c(q, \mu)$.
 - $p(\cdot)$ is the demand (price) function
 - $c(\cdot)$ is the cost function
 - ullet costs depend on the existing technology, described by some parameter $\mu.$
- Let $q^*(\mu)$ be the monopolist's optimal quantity.
- Suppose $-c(q, \mu)$ is supermodular in (q, μ) ; then the entire objective function is also supermodular in (q, μ) .
 - ullet this follows because the first term of the objective does not depend on μ .
- Notice that supermodularity says that for all q' > q, $-c(q', \mu) + c(q, \mu)$ is nondecreasing in μ .
 - ullet in other words, the marginal cost is decreasing in μ .
- Conclusion: by Topkis' theorem q^* is nondecreasing as long as the marginal cost of production decreases in the technological progress parameter μ .

Single-Crossing

f(x', q') - f(x, q') > 0.

• In constrained maximization problems, $x \in S(q)$, supermodularity is not enough for Topkis' theorem.

Definition

The function $f: \mathbb{R}^2 \to \mathbb{R}$ satisfies single-crossing in (x, q) if for all x' > x, q' > q $f(x', q) - f(x, q) \ge 0 \qquad \text{implies} \qquad f(x', q') - f(x, q') \ge 0$ and

f(x', q) - f(x, q) > 0

• As a function of the second argument, the 'marginal return' can cross 0 at most once; whenever it crosses 0, as the second argument continues to increase, the marginal return will remain positive.

implies

Theorem

If f satisfies single crossing in (x, q), then $x^*(q) = \arg\max_{x \in S(q)} f(x, q)$ is nondecreasing. Moreover, if $x^*(q)$ is nondecreasing in q for all constraint choice sets S, then f satisfies single-crossing in (x, q).

Monotone Comparative Statics

n-dimensional choice variable and *m*-dimensional parameter vector

Next, we generalize to higher dimensions.

Definitions

Suppose $\mathbf{x}, \mathbf{y} \in \mathbf{R}^n$.

• The join of x and y is defined by

$$\mathbf{x} \vee \mathbf{y} = (\max\{x_1, y_1\}, \max\{x_2, y_2\}, \dots, \max\{x_n, y_n\}).$$

• The meet of x and y is defined by

$$\mathbf{x} \wedge \mathbf{y} = (\min\{x_1, y_1\}, \min\{x_2, y_2\}, \dots, \min\{x_n, y_n\}).$$

Draw a picture.

Strong Set Order

• We generalize the strong set order definition to \mathbb{R}^n .

Definition (Strong set order in \mathbb{R}^n)

The binary relation \geq_s is defined as follows: for $A, B \subset \mathbb{R}^n$,

for any
$$\mathbf{a} \in A$$
 and $\mathbf{b} \in B$
$$A \ge_s B \qquad \text{if} \qquad \qquad \mathbf{a} \wedge \mathbf{b} \in B \quad \text{and} \quad \mathbf{a} \vee \mathbf{b} \in A$$

- The meet is in the smaller set, while the join is in the larger set.
- ullet One uses this to talk about non-decreasing \mathbb{R}^n -valued correspondences.
- We look at functions $f(\mathbf{x}, \mathbf{q})$ where the first argument represents the endogenous variables and the second represents the parameters.

Quasi-Supermodularity

Definition

The function $f: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$ is quasi-supermodular in its first argument if, for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ and $\mathbf{q} \in \mathbb{R}^m$:

- $f(\mathbf{x}, \mathbf{q}) f(\mathbf{x} \wedge \mathbf{y}, \mathbf{q}) \ge 0 \qquad \Rightarrow \qquad f(\mathbf{x} \vee \mathbf{y}, \mathbf{q}) f(\mathbf{y}, \mathbf{q}) \ge 0;$ $f(\mathbf{x}, \mathbf{q}) f(\mathbf{x} \wedge \mathbf{y}, \mathbf{q}) > 0 \qquad \Rightarrow \qquad f(\mathbf{x} \vee \mathbf{y}, \mathbf{q}) f(\mathbf{y}, \mathbf{q}) > 0.$
- This generalizes the 'mixed' second partial derivatives typically used to make statements about complementarities.
- Quasi-supermodularity is an ordinal property (robust to strictly increasing transformations)
- For differentiable functions there is a sufficient condition for quasi-supermodularity.

Exercise

Show that if $f(\mathbf{x}, \mathbf{q})$ is twice differentiable in \mathbf{x} and $\frac{\partial^2 f}{\partial x_i \partial x_j} > 0$ for all $i, j = 1, \dots, n$ with $i \neq j$ then f is quasi-supermodular in \mathbf{x} .

Single-Crossing Property

Definition

The function $f: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$ satisfies the single-crossing property if, for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ and $\mathbf{q}, \mathbf{r} \in \mathbb{R}^m$ such that $\mathbf{x} \geq \mathbf{y}$ and $\mathbf{q} \geq \mathbf{r}$:

- $f(\mathbf{x},\mathbf{r})-f(\mathbf{y},\mathbf{r})\geq 0 \qquad \Rightarrow \qquad f(\mathbf{x},\mathbf{q})-f(\mathbf{y},\mathbf{q})\geq 0;$
- $f(\mathbf{x},\mathbf{r})-f(\mathbf{y},\mathbf{r})>0 \qquad \Rightarrow \qquad f(\mathbf{x},\mathbf{q})-f(\mathbf{y},\mathbf{q})>0.$
- The "marginal return" $f(\mathbf{x}, \cdot) f(\mathbf{y}, \cdot)$ as a function of the second argument can cross 0 at most once.
- The single-crossing property is an ordinal property (robust to strictly increasing transformations)
- For differentiable functions there is a sufficient condition for single-crossing.

Exercise

Show that if $f(\mathbf{x}, \mathbf{q})$ is twice differentiable and $\frac{\partial^2 f}{\partial x_i \partial q_k} > 0$ for all $i = 1, \ldots, n$ and $k = 1, \ldots, m$ then f satisfies the single-crossing property.

Monotone Comparative Statics

Theorem (easy Milgrom and Shannon)

Let $f: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$. Define $x^*(\mathbf{q}) = \arg\max_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x}, \mathbf{q})$. Suppose $|x^*(\mathbf{q})| = 1$ for all \mathbf{q} and $f(\mathbf{x}, \mathbf{q})$ is quasi-supermodular in its first argument and satisfies the single-crossing property. Then $q > r \Rightarrow x^*(q) > x^*(r)$.

• 'Easy' because it assumes the optimum is unique (thus, the proof does not use 'strict' quasi-supermodularity and single-crossing).

Proof.

Suppose
$$\mathbf{q} \geq \mathbf{r}$$
. Then: $f(x^*(\mathbf{r}), \mathbf{r}) \geq f(x^*(\mathbf{q}) \wedge x^*(\mathbf{r}), \mathbf{r})$ by definition of $x^*(\mathbf{q})$

$$\Rightarrow f(x^*(\mathbf{q}) \vee x^*(\mathbf{r}), \mathbf{r}) > f(x^*(\mathbf{q}), \mathbf{r})$$
 by quasi-supermodularity in **x**

$$\Rightarrow f(x^*(\mathbf{q}) \lor x^*(\mathbf{r}), \mathbf{r}) \ge f(x^*(\mathbf{q}), \mathbf{r})$$
 by quasi-supermodularity in x
$$\Rightarrow f(x^*(\mathbf{q}) \lor x^*(\mathbf{r}), \mathbf{q}) \ge f(x^*(\mathbf{q}), \mathbf{q})$$
 by Single Crossing

$$\Rightarrow f(x^*(\mathbf{q}) \lor x^*(\mathbf{r}), \mathbf{q}) \ge f(x^*(\mathbf{q}), \mathbf{q}) \qquad \text{by Single Crossing}$$

$$\Rightarrow x^*(\mathbf{q}) \lor x^*(\mathbf{r}) = x^*(\mathbf{q}) \qquad \text{since } |x^*(\mathbf{q})| \text{ equals } 1$$

$$\Rightarrow x^*(\mathbf{q}) \lor x^*(\mathbf{r}) = x^*(\mathbf{q}) \qquad \text{since } |x^*(\mathbf{q})| \text{ equals } 1$$

$$\Rightarrow x^*(\mathbf{q}) > x^*(\mathbf{r}) \qquad \text{by Question 2, PS4}$$

Demand Data and Rationality: Motivation

Main Idea

• We observe finite data and want to know if it could have been the result of rational behavior (i.e. maximizing a preference relation or a utility function).

Demand data observations

• We observe *N* consumption choices made by an individual, given her income and prices (also observable):

$$x^{1}, p^{1}, w^{1}$$
 x^{2}, p^{2}, w^{2} x^{3}, p^{3}, w^{3} ... x^{N}, p^{N}, w^{N}

These satisfy:

- $(\mathbf{x}^j, \mathbf{p}^j, w^j) \in \mathbb{R}^n_+ \times \mathbb{R}^n_{++} \times \mathbb{R}_+$ for all j = 1, ..., N; and
- $\mathbf{p}^j \cdot \mathbf{x}^j \leq w^j$ for all j = 1, ..., N.
- In other words, we have finitely many observations on behavior.
- What conditions must these observations satisfy for us to conclude they are the result of the maximizing of a preference relation or a utility function?
- Answer: Something similar to, but stronger than, revealed preference.

An Example (from Kreps)

- There are 3 goods; a choice, given income w and prices (p_1p_2, p_3) , is (x_1x_2, x_3)
- We observe the following:

observation 1 300
$$(10, 10, 10)$$
 $(10, 10, 10)$ observation 2 130 $(10, 1, 2)$ $(9, 25, 7.5)$ observation 3 110 $(1, 1, 10)$ $(15, 5, 9)$

- Are these choices consistent with rational behavior? Is there a preference/utility function that generates these choices?
 - Sure: suppose the consumer strictly prefers (500, 500, 500) to anything else, and is indifferent among all other bundles.
 - Since (500, 500, 500) is never affordable, any other choice is rationalizable.
 - This seems silly, and not something that should worry us since we can never rule it out.
- So, we start by assuming local non satiation.

Consequences of Local Non Satiation

• The following is slightly different from Full Expenditure.

Lemma

Suppose \succeq is locally non-satiated, and let \mathbf{x}^* be an element of Walrasian demand (therefore $\mathbf{x}^* \succeq \mathbf{x}$ for all $\mathbf{x} \in \{\mathbf{x} \in X : \mathbf{p} \cdot \mathbf{x} \le w\}$). Then

$$\mathbf{x}^* \succsim \mathbf{x}$$
 when $\mathbf{p} \cdot \mathbf{x} = w$

and

$$\mathbf{x}^* \succ \mathbf{x}$$
 when $\mathbf{p} \cdot \mathbf{x} < w$

- The maximal bundle is weakly preferred to any bundle that costs the same.
- The maximal bundle is strictly preferred to any bundle that costs less.

Proof.

The first part is immediate, by definition of Walrasian demand.

For the second part note that if $\mathbf{p} \cdot \mathbf{x} < w$ then by local non satiation and continuity of $\mathbf{p} \cdot \mathbf{x}$ there exists some \mathbf{x}' such that $\mathbf{x}' \succ \mathbf{x}$ and $\mathbf{p} \cdot \mathbf{x}' \leq w$.

Thus \mathbf{x}' is affordable and $\mathbf{x}^* \succsim \mathbf{x}' \succ \mathbf{x}$ as desired.

Back to the Example

We observe the following:

```
observation 1 300 (10, 10, 10) (10, 10, 10) observation 2 130 (10, 1, 2) (9, 25, 7.5) observation 3 110 (1, 1, 10) (15, 5, 9)
```

- The consumer spends her entire income in all cases
 - this is consistent with local non satiation.

Furthermore:

- At prices (10, 10, 10) the bundle (15, 5, 9) could have been chosen (it costs 290).
- At prices (10, 1, 2) the bundle (10, 10, 10) could have been chosen (it costs 130).
- At prices (1, 1, 10) the bundle (9, 25, 7.5) could have been chosen (it costes 109).
- What does all this tell us?

Example Continued

Consumer's choices among 3 goods

	W	р	X
observation 1	300	(10, 10, 10)	(10, 10, 10)
observation 2	130	(10, 1, 2)	(9, 25, 7.5)
observation 3	110	(1, 1, 10)	(15, 5, 9)

- Using local non satiation we can conclude the following.
- Since at prices (10,1,2), the bundle (9,25,7.5) costs the same as (10,10,10):

$$(9,25,7.5) \succsim (10,10,10)$$

• Since at prices (1, 1, 10), the bundle (9, 25, 7.5) costs strictly less than (15, 5, 9): $(15, 5, 9) \succ (9, 25, 7.5)$

$$(10,10,10) \succ (15,5,9) \succ (9,25,7.5) \succeq (10,10,10)$$

• These observations are not consistent with utility/preference maximization theory!

Example End

Suppose instead the data looks as follows

- Since at prices (10, 10, 10), the bundle (15, 5, 9) costs strictly less than (10, 10, 10): $(10, 10, 10) \succ (15, 5, 9)$.
- Since at prices (10, 1, 2), the bundle (9, 25, 7.5) costs the same as (10, 10, 10): $(9, 25, 7.5) \succeq (10, 10, 10)$.
- At prices (1, 2, 10), no other bundle is affordable thus we no longer have a contradiction.
- In fact, there are two possibilities:

$$(9,25,7.5) \succeq (10,10,10) \succ (15,5,9)$$
 or $(9,25,7.5) \sim (10,10,10) \succ (15,5,9)$

Next Class

- Generalized Axiom of Revealed Preferences
- Afriat's Theorem